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Abstract - 2D motion field is the velocity field which presents the apparent motion from one image to
another in an image sequence. In this paper, with the objective of accurate estimation of 2D dense motion
field, a hybrid diffusion model is proposed. The present approach differs from those in the literature in
that the diffusion model and its associated objective functional are driven by both the flow field and
image, through the nonlinear isotropic diffusion term and the linear anisotropic diffusion term, respec-
tively. The diffusion function in the model is required to be non increasing, non negative, differentiable
and bounded. Furthermore, using Schauder’s fixed point theorem, we prove the existence, stability and
uniqueness of the solution to the proposed hybrid diffusion model. The semi-implicit scheme is proposed
to implement the hybrid diffusion model. We demonstrate its efficiency and accuracy by experiments on
synthetic and real image sequences.

1. INTRODUCTION
Efficient and reliable 2D dense motion (optical flow) estimation plays a very important role in image
processing and computer vision with various applications, such as dense depth estimation, motion anal-
ysis, etc. It can be formulated in terms of a variational problem which minimizes a specific energy
functional. Recently variational techniques and associated PDE approaches have been widely applied
for 2D motion estimation. They are efficient to regularize motion field while preserving important data
discontinuities [17].

Apart from the standard Tikhonov quadratic regularization of Horn and Schunck’s [10], Deriche
et al. [7] investigated nonquadratic smoothness constraints. They used monotone flux functions for
which one can guarantee well-posedness of the process. Proesmans et al. [16] developed the coupled
geometry-driven diffusion equations to estimate optical flow. Their model is complicated, and composed
of a system of six coupled nonlinear reaction diffusion equations. Weickert [19] improved the smoothness
constraint of [7] by setting up a stronger coupling system of two nonlinear reaction diffusion equations
with a common diffusivity for both components of optical flow ensuring that the discontinuities appear
at the same locations. Alvarez et al. [2] incorporated the orientation smoothness term from [14] to form
an anisotropic diffusion model, taking into account the orientation information from image sequence.
Recently Brox et al. [4] introduced an extra data term from gradient constancy assumption, they obtained
significantly improved estimation results.

In the literature, the diffusion process for optical flow estimation, is controlled by either the image
gradient information (image driven), or the optical flow field information (flow driven). For example,
nonlinear flow-driven isotropic diffusion models, only preserve the discontinuities in the magnitude of
the optical flow [19]; while image-driven anisotropic diffusion models only consider the discontinuities
in the gradient orientation [2]. There are seldom diffusion models which could take into account both
discontinuities. Weickert and Schnörr [20] proposed a unifying framework to include different diffusion
models. They focus on convex regularizers which can guarantee a unique minimum. However, there are
indeed wide applications of non-convex regularizers in practice for more precisely handling discontinuities,
such as Geman and Reynolds’s model for recovery of discontinuities in image restoration [8] and Keeling
and Stollberger’s model for more accurate segmentation [11], etc.

In this work, we propose a hybrid diffusion model in order to make full use of the available information
at each location of image sequence, i.e. image and optical flow field. Starting from a general energy
functional which is not necessarily convex, we use the variational principle to formulate its associated
Euler-Lagrange equations and set up the hybrid diffusion model. A system of coupled reaction diffusion
equations, including both nonlinear flow driven diffusion term and anisotropic image driven diffusion term
is proposed. This formulation allows preserving the discontinuities in magnitude and orientation with an
attempt for more accurate estimation of motion field.

Throughout the literature, there is not much theoretical support provided to analyze the diffusion
model properties, especially for non-convex regularizers. One of the fundamental investigations was
made by Weickert [18] for the theoretical analysis of nonlinear diffusion filtering, to establish existence,
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uniqueness and regularity of its solution, based on the mathematical formulation from [5].
For optical flow estimation, Alvarez et al. [1] developed a theoretical framework to prove the existence

and uniqueness of solution for a linear inhomogeneous diffusion model. Their proposed model is associated
with quadratic energy functional. For their theoretical analysis, the Banach fixed point theorem has been
used, which only applies to contraction mapping. The same framework and theorem have been used
to analyze a linear anisotropic diffusion model of [3]. Hinterberger et al. [9] studied the existence and
uniqueness of solution to quasi-convex functionals. Recently, Weickert and Schnörr [20] provided the
theoretical proof of well-posedness in the sense of Hadamard for convex regularizers.

In this work, following the framework proposed in [5], we prove the existence, stability and uniqueness
of the solution to the proposed hybrid diffusion model for optical flow estimation which consists of two
coupled PDEs. The Schauder fixed point theorem is used, which applies to infinite-dimensional Banach
space and any continuous mapping, more stronger than the Banach fixed point theorem. Since our
analysis is not restricted to convex regularizers, this provides theoretical support for the diffusion models
with non-convex regularizers and more flexibility for the selection of regularizers in applications.

Furthermore, to implement the proposed model, the semi-implicit scheme is formulated. It is a stable
and efficient numerical scheme. Experimental results on both synthetic and real image sequences show
its advantages, i.e. fast convergence and high accuracy.

The rest of the paper is organized as follows, section 2 presents the hybrid diffusion model based on
variational principle. Section 3 investigates the theoretical analysis of the model, and proves the exis-
tence, stability and uniqueness of solution to the model. In section 4, a semi-implicit scheme is proposed
for the numerical implementation of the model. Section 5 presents experimental evaluation performed on
both synthetic and real image sequences. Finally, some conclusions are drawn in section 6.

2. HYBRID DIFFUSION MODEL - SYSTEM FORMULATION
As mentioned above, the optical flow estimation is an ill-posed inverse problem, for which a regularization
term is usually required, such that the optical flow field should be piecewise smooth. Such a term could
be (a) image driven, in order to suppress smoothing at or across image boundaries and preserve the
orientation discontinuities, or (b) optical flow driven, to reduce smoothing across motion discontinuities.
The resulting diffusion models are controlled by either the image gradient or the optical flow gradient.

In order to make full use of the available information at each location, we investigate a hybrid diffusion
model which takes into account both image and optical flow field. The proposed general objective
functional is defined as follows:

E(v) =

∫

Ω

αC(v)dxdy + βof

∫

Ω

Φ(‖∇u‖, ‖∇v‖)dxdy + βI

∫

Ω

tr((∇v)T D(∇I)(∇v))dxdy (1)

where
C(v) = (Ixu + Iyv + It)

2, D(∇I) =

(

d11 d12

d21 d22

)

, ∇v =

(

ux vx

uy vy

)

(2)

I stands for the image, and v(u, v) is the optical flow field. The first term in eqn. (1) stands for the
standard optical flow constraint [10]. The second and third terms are regularization terms based on the
optical flow gradient and the image gradient, respectively. α, βof , βI ≥ 0, are constants to control the
contributions of these terms. Φ is a potential function that is not necessarily convex. D(∇I) is a positive
definite matrix [14].

The above model can preserve the discontinuities of both orientation and magnitude based on the
two diffusion terms (regularization terms). Along the same research direction, recently, a systematic
framework that links the diffusion and optical flow paradigms was presented by Weickert and Schnörr [20],
assuming that the objective function is convex. They proved the well-posedness of its solution in the
sense of Hadamard. In the following analysis of our model, the regularizers are not necessarily convex.
This would offer more choices of the regularizers to control the expected objective functional.

Based on the variational principle, we can deduce the associated Euler-Lagrange equations of the above
objective functional, which is the necessary condition of the solution to minimization of eqn. (1)(see [21]
for a proof). Further introducing the scale parameter, we can obtain the proposed diffusion model as:

uθ = div[βof
Φ′(‖∇u‖,‖∇v‖)

|∇u| ∇u + 2βID(∇I)∇u] − 2α(Ixu + Iyv + It)Ix

vθ = div[βof
Φ′(‖∇u‖,‖∇v‖)

|∇v| ∇v + 2βID(∇I)∇v] − 2α(Ixu + Iyv + It)Iy

(3)

where Φ′ is the derivative of function Φ.
In the case where Φ is in the form of Φ(‖∇u‖2 + ‖∇v‖2), we obtain the following diffusion models:

uθ = div[βofΦ′(‖∇u‖2 + ‖∇v‖2)∇u + 2βID(∇I)∇u] − 2α(Ixu + Iyv + It)Ix

vθ = div[βofΦ′(‖∇u‖2 + ‖∇v‖2)∇v + 2βID(∇I)∇v] − 2α(Ixu + Iyv + It)Iy
(4)
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The two regularization parameters βof and βI are chosen to balance the contribution of the flow field
information and image flow information, respectively. It is obvious that, when βI = 0, the obtained non-
linear isotropic diffusion model is a special case of eqns (4). The same holds for the anisotropic diffusion
model, when βof = 0.

3. THEORETICAL ANALYSIS - EXISTENCE, STABILITY AND UNIQUENESS OF
SOLUTION
In this section, we will analyze the solutions of the hybrid diffusion model given by eqns (4). In the past,
the theoretical analysis of diffusion models in terms of existence and uniqueness of solution has been
mainly made for image filtering with the fundamental analysis from [5] developed for the case of one
diffusion equation. Inspired by their methodology, and based on the properties of a system of PDEs in
[12], we analyze the solution to the system of the two coupled nonlinear reaction diffusion equations given
by eqns (4). We use Schauder’s fixed point theorem to prove that the solution of the hybrid diffusion
model exists, it is unique, and the system is well-posed.

Before going further, we first discuss the issue of smoothing inside the diffusion term. Catté et al. [5]
introduced the convolution with Gaussian kernel Gσ in the original Perona-Malik formulation [15], i.e.,
using ‖∇Iσ‖ = ‖∇Gσ ∗ I‖ to replace ‖∇I‖ in the diffusion function in order to prove the existence and
uniqueness of a solution. Following the same idea, we introduce the Gaussian convolution with each
component of the optical flow in the diffusion term of the proposed hybrid model.

Let σ > 0, and Gσ = 1√
2πσ

exp(−‖x‖2

4σ
) be the Gaussian filter. We denote ‖∇Gσ ∗ u‖ = [

∑2
i=1(

∂Gσ

∂xi
∗

ũ)2]
1
2 , ‖∇Gσ ∗ v‖ = [

∑2
i=1(

∂Gσ

∂xi
∗ ṽ)2]

1
2 , where ũ is a linear and continuous extension of u to R

2 and ṽ

is a linear and continuous extension of v to R
2. They depend on the boundary condition on ∂Ω imposed

on u and v.
Assuming for simplicity that u and v are defined on [0, 1] × [0, 1], for Neumann boundary condition,

we can set (it follows the mirror mapping)

ũ(x, y) = u(−x, y),−1 ≤ x ≤ 0, 0 ≤ y ≤ 1, ũ(x,−y) = u(x,−y), 0 ≤ x ≤ 1,−1 ≤ y ≤ 0, · · ·
ṽ(x, y) = v(−x, y),−1 ≤ x ≤ 0, 0 ≤ y ≤ 1, ṽ(x,−y) = v(x,−y), 0 ≤ x ≤ 1,−1 ≤ y ≤ 0, · · ·

Let Φ′(‖∇Gσ ⋆ u‖2 + ‖∇Gσ ⋆ v‖2). g is a non-increasing, non-negative, differentiable and bounded
function which tends to zero at infinity.

Theorem. Denote [0, a1] × [0, a2] by Ω, max(|Ix|, |Iy|) ≤ A,max(|It|) ≤ B. Let T, βI , βof , and α be
positive constants. Suppose that u0, v0 ∈ L2(Ω), QT = Ω × (0, T ].

Then there exist unique functions u, v ∈ C∞([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)) verifying, in the distri-
butional sense, the system

uθ − div[βofΦ′(‖∇Gσ ∗ u‖2 + ‖∇Gσ ∗ v‖2)∇u + 2βID(∇I)∇u] + 2α(Ixu + Iyv + It)Ix = 0
vθ − div[βofΦ′(‖∇Gσ ∗ u‖2 + ‖∇Gσ ∗ v‖2)∇v + 2βID(∇I)∇v] + 2α(Ixu + Iyv + It)Iy = 0

(5)

∂u
∂n

= 0, ∂v
∂n

= 0, on ∂Ω×]0, T ] and u(0) = u0, v(0) = v0 (6)

This unique solution is in C∞(]0, T [×Ω) and depends continuously on the initial values u0 and v0.
Proof. For the simplicity of the proof, without losing generality, we can set 2βI = βof = 2α = 1.
(a) Existence of a solution.
Similar to the framework of [5], we introduce the space W (0, T ) = {w ∈ L2(0, T ;H1(Ω)), dw

dθ
∈

L2(0, T ; (H1(Ω))′)}. It is a Hilbert space for the graph norm [6]. And let f1 = IxIt, f2 = IyIt.
First of all, as deduced in [21], we can prove that there is a constant C2, depending only on T and A

such that
‖u‖2

L∞(0,T ;L2(Ω)) + ‖v‖2
L∞(0,T ;L2(Ω)) ≤ C2(‖u

0‖2
L2(Ω) + ‖v0‖2

L2(Ω) + A2B2T |Ω|) (7)

where |Ω| is the measure of Ω.
Let w1, w2 ∈ W (0, T )∩L∞(0, T ;L2(Ω)). Consider the problem (Ew) of a system of two coupled PDEs

Uθ(w) −div[Φ′(‖∇Gσ ⋆ w1‖
2 + ‖∇Gσ ⋆ w2‖

2)∇U(w) + D(∇I)∇U(w)]
+(IxU(w) + IyV (w) + It)Ix = 0

Vθ(w) −div[Φ′(‖∇Gσ ⋆ w1‖
2 + ‖∇Gσ ⋆ w2‖

2)∇V (w) + D(∇I)∇V (w)]
+(IxU(w) + IyV (w) + It)Iy = 0

(8)

∂U
∂n

= 0, ∂V
∂n

= 0, on ∂Ω×]0, T ], and U(·, 0) = u0, V (·, 0) = v0. (9)

The solution (U, V ) of the problem (Ew) is understood in the sense that they belong to W (0, T ) ∩
L∞(0, T ;L2(Ω)) and satisfy the system (similar to [5] except that here we have a system of two coupled
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PDEs)
< Uθ(w), γ1 > +

∫

Ω
Φ′(‖∇Gσ ∗ w1‖

2 + ‖∇Gσ ∗ w2‖
2)∇U(w)∇γ1dxdy

+
∫

Ω
D∇U(w) · ∇γ1dxdy +

∫

Ω
(I2

xU(w) + IxIyV (w))γ1dxdy+ < f1, γ1 >= 0,

< Vθ(w), γ2 > +
∫

Ω
Φ′(‖∇Gσ ∗ w1‖

2 + ‖∇Gσ ∗ w2‖
2)∇V (w)∇γ2dxdy

+
∫

Ω
D∇V (w) · ∇γ2dxdy +

∫

Ω
(I2

yV (w) + IxIyU(w))γ2dxdy+ < f2, γ2 >= 0,

∀γ1 ∈ H1(Ω),∀γ2 ∈ H1(Ω), a.e. in [0, T ].

where < ·, · > is the inner product in L2(Ω).
Since w1, w2 ∈ L∞(0, T, L2(Ω)); Φ′, G are C∞, and ‖∇Gσ ∗ w1‖

2 + ‖∇Gσ ∗ w2‖
2 is lower bounded,

we can deduce that Φ′(‖∇Gσ ∗ ·‖2 + ‖∇Gσ ∗ ·‖2) ∈ L∞(0, T, C∞(Ω)).
Thus, since Φ′ is non-increasing, there exists a constant ̺ such that Φ′(‖∇Gσ∗w1‖

2+‖∇Gσ∗w2‖
2) ≥ ̺,

where ̺ depends only on Φ′, Gσ, ‖u0‖L2(Ω), ‖v
0‖L2(Ω), A,B.

We define
H1(Ω) = {û(x, y) | û ∈ L2(Ω), ∂û

∂x
, ∂û

∂y
∈ L2(Ω)}

H1,0(QT ) = {û(x, y, θ) | û ∈ L2(QT ), ∂û
∂x

, ∂û
∂y

∈ L2(QT )}

V
1,0
2 (QT ) = H1,0(QT ) ∩ C([0, T ], L2(Ω))

According to Theorem 1.1 in Chapter 7 [12](pp. 573) applied to the problem (Ew), we deduce that
there is a unique solution (U, V ) with U, V ∈ V

1,0
2 (QT ) for the problem (Ew).

Now, following the same way to prove the Theorems 1 and 2 of Chapter 18 in [6] (pp. 509-517), we
conclude that dU

dθ
, dV

dθ
∈ L2(0, T ; (H1(Ω))′), and

‖U(w)‖L2(0,T ;H1(Ω)) + ‖V (w)‖L2(0,T ;H1(Ω)) ≤ C1, (10)

‖dU(w)
dθ

‖L2(0,T ;(H1(Ω))′) + ‖dV (w)
dθ

‖L2(0,T ;(H1(Ω))′) ≤ C3, (11)

‖U(w)‖L∞(0,T ;L2(Ω)) + ‖V (w)‖L∞(0,T ;L2(Ω)) ≤ C2(‖u
0‖L2(Ω) + ‖v0‖L2(Ω) + A2B2T |Ω|) (12)

where C1 and C3 are constants that depend only on Φ′, G and u0, v0.
These estimates lead us to introduce the subset W0 of W (0, T ) × W (0, T ) defined by

W0 = { (w1, w2), w1, w2 ∈ W (0, T ); ‖w1‖L2(0,T ;H1(Ω)) + ‖w2‖L2(0,T ;H1(Ω)) ≤ C1,

‖dw1

dθ
‖L2(0,T ;(H1(Ω))′) + ‖dw2

dθ
‖L2(0,T ;(H1(Ω))′) ≤ C3,

‖w1‖L∞(0,T ;L2(Ω)) + ‖w2‖L∞(0,T ;L2(Ω)) ≤ C2(‖u
0‖L2(Ω) + ‖v0‖L2(Ω) + A2B2T |Ω|);

w1(0) = u0, w2(0) = v0}

By eqns (10)-(12), (U(w), V (w)) is a mapping from W0 into W0. Moreover, W0 is a nonempty, convex
and weakly compact in W (0, T ) × W (0, T ).

Next, following the same idea of Catté et al. [5], we can prove that (U, V ) is a weakly continuous
mapping from W0 into W0. Then, applying Schauder’s fixed point theorem, we can prove the existence
of a solution to eqns (5) and (6).

(b) Stability of the solution.
To prove that the solution depends continuously on the initial data, we consider (ū(0), v̄(0)), (û(0), v̂(0))

as two initial values of the problem in eqns (5), and (ū, v̄), (û, v̂) the two corresponding solutions, for al-
most every t ∈ [0, T ],

dū
dθ

− div(κ̄∇ū) − div(D(∇I)∇ū) + (Ixū + Iy v̄ + It)Ix = 0
dv̄
dθ

− div(κ̄∇v̄) − div(D(∇I)∇v̄) + (Ixū + Iy v̄ + It)Iy = 0
(13)

dû
dθ

− div(κ̂∇û) − div(D(∇I)∇û) + (Ixû + Iy v̂ + It)Ix = 0
dv̂
dθ

− div(κ̂∇v̂) − div(D(∇I)∇v̂) + (Ixû + Iy v̂ + It)Iy = 0
(14)

where κ̄ = Φ′(‖∇Gσ ∗ ū‖2 + ‖∇Gσ ∗ v̄‖2), κ̂ = Φ′(‖∇Gσ ∗ û‖2 + ‖∇Gσ ∗ v̂‖2)
Similar to [5] except that we work on a system of two PDEs that contain two diffusion terms, we

subtract the first equation in eqns (14) from the first one in eqns (13), and the second equation in eqns
(14) from the second one in eqns (13), respectively, followed by multiplying the first equation by ū − û,
and the second equation by v̄ − v̂, and integrating w.r.t. x, respectively, we obtain:

∫

Ω
div((κ̄ − κ̂)∇û)(ū − û)dxdy =

∫

Ω
d
dθ

(ū − û)(ū − û)dxdy −
∫

Ω
div(κ̄(∇ū −∇û))(ū − û)dxdy

−
∫

Ω
div(D(∇I)(∇ū −∇û))(ū − û)dxdy

+
∫

Ω
I2
x(ū − û)2dxdy +

∫

Ω
IxIy(v̄ − v̂)(ū − û)dxdy

∫

Ω
div((κ̄ − κ̂)∇v̂)(v̄ − v̂)dxdy =

∫

Ω
d
dθ

(v̄ − v̂)(v̄ − v̂)dxdy −
∫

Ω
div(κ̄(∇v̄ −∇v̂))(v̄ − v̂)dxdy

−
∫

Ω
div(D(∇I)(∇v̄ −∇v̂))(v̄ − v̂)dxdy

+
∫

Ω
I2
y (v̄ − v̂)2dxdy +

∫

Ω
IxIy(v̄ − v̂)(ū − û)dxdy

(15)
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Furthermore, we deduce

−
∫

Ω
(κ̄ − κ̂)∇û(∇ū −∇û)dxdy = 1

2
d
dθ
‖ū − û‖2

L2(Ω) +
∫

Ω
κ̄(∇ū −∇û)2dxdy

+
∫

Ω
div(D(∇I)(∇ū −∇û) · (∇ū −∇û)dxdy

+
∫

Ω
I2
x(ū − û)2dxdy +

∫

Ω
IxIy(v̄ − v̂)(ū − û)dxdy

−
∫

Ω
(κ̄ − κ̂)∇v̂(∇v̄ −∇v̂)dxdy = 1

2
d
dθ
‖v̄ − v̂‖2

L2(Ω) +
∫

Ω
κ̄(∇v̄ −∇v̂)2dxdy

+
∫

Ω
div(D(∇I)(∇v̄ −∇v̂) · (∇v̄ −∇v̂)dxdy

+
∫

Ω
I2
y (v̄ − v̂)2dxdy +

∫

Ω
IxIy(v̄ − v̂)(ū − û)dxdy

(16)

Since κ̄ is bounded from below by ̺ ≥ 0 and D(∇I)(∇ū −∇û) · (∇ū −∇û) ≥ 0, we have

1
2

d
dθ
‖ū − û‖2

L2(Ω) + ̺‖∇ū −∇û‖L2(Ω) +
∫

Ω
I2
x(ū − û)2dxdy

+
∫

Ω
IxIy(v̄ − v̂)(ū − û)dxdy ≤ ‖κ̄ − κ̂‖L∞(Ω)‖∇û‖L2(Ω)‖∇ū −∇û‖L2(Ω)

1
2

d
dθ
‖v̄ − v̂‖2

L2(Ω) + ̺‖∇v̄ −∇v̂‖L2(Ω) +
∫

Ω
I2
y (v̄ − v̂)2dxdy

+
∫

Ω
IxIy(v̄ − v̂)(ū − û)dxdy ≤ ‖κ̄ − κ̂‖L∞(Ω)‖∇v̂‖L2(Ω)‖∇v̄ −∇v̂‖L2(Ω)

(17)

Taking the sum of the two equations in eqns (17), we get

1
2

d
dθ
‖ū − û‖2

L2(Ω) + 1
2

d
dθ
‖v̄ − v̂‖2

L2(Ω) + ̺‖∇ū −∇û‖2
L2(Ω)

+̺‖∇v̄ −∇v̂‖2
L2(Ω) +

∫

Ω
(Ix(ū − û) − Iy(v̄ − v̂))2dxdy ≤

‖κ̄ − κ̂‖L∞(Ω)‖∇û‖L2(Ω)‖∇ū −∇û‖L2(Ω) + ‖κ̄ − κ̂‖L∞(Ω)‖∇v̂‖L2(Ω)‖∇v̄ −∇v̂‖L2(Ω)

(18)

Since Φ′ and G are C∞, ‖κ̄− κ̂‖L∞(Ω) ≤ Ck(‖ū− û‖L2(Ω) + ‖v̄− v̂‖L2(Ω)) with Ck depending on Φ′, G
and u0, v0. Using the fact that if K1,K2 > 0, then K1K2 ≤ 1

4̺
K2

1 + ̺K2
2 , we get

1
2

d
dθ
‖ū − û‖2

L2(Ω) + 1
2

d
dθ
‖v̄ − v̂‖2

L2(Ω)

+̺‖∇ū −∇û‖2
L2(Ω) + ̺‖∇v̄ −∇v̂‖2

L2(Ω) + ‖Ix(ū − û) − Iy(v̄ − v̂)‖2
L2(Ω)

≤ 1
4̺

C2
k(‖ū − û‖L2(Ω) + |v̄ − v̂‖L2(Ω))

2‖∇û‖2
L2(Ω) + ̺‖∇ū −∇û‖2

L2(Ω)

+ 1
4̺

C2
k(‖ū − û‖L2(Ω) + |v̄ − v̂‖L2(Ω))

2‖∇v̂‖2
L2(Ω) + ̺‖∇v̄ −∇v̂‖2

L2(Ω)

(19)

and so,
d
dθ

(‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω)) ≤
1
2̺

C2
k(‖∇û‖2

L2(Ω) + ‖∇v̂‖2
L2(Ω))(‖ū − û‖L2(Ω) + ‖v̄ − v̂‖L2(Ω))

2

(20)
Since ‖∇û‖2

L2(Ω) and ‖∇v̂‖2
L2(Ω) are bounded (‖∇û‖2

L2(Ω), ‖∇v̂‖2
L2(Ω) ≤ C̄), from Eqn. (20) we have

d

dθ
(‖ū − û‖2

L2(Ω) + ‖v̄ − v̂‖2
L2(Ω)) ≤

1

̺
C2

kC̄(‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω)) (21)

Taking the integral w.r.t. θ from 0 to τ , we get

‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω) ≤ 1
̺
C2

kC̄
∫ τ

0
(‖ū − û‖2

L2(Ω) + ‖v̄ − v̂‖2
L2(Ω))dθ

+‖ū(0) − û(0)‖2
L2(Ω) + ‖v̄(0) − v̂(0)‖2

L2(Ω)

(22)

Using the Gronwall lemma, we get

‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω) ≤ C4(‖ū(0) − û(0)‖2
L2(Ω) + ‖v̄(0) − v̂(0)‖2

L2(Ω)) (23)

with C4 = exp( 1
̺
C2

kC̄T ).

Let ǫ > 0 and δ = ǫ
C4

. For (‖ū(0) − û(0)‖2
L2(Ω) + ‖v̄(0) − v̂(0)‖2

L2(Ω)) < δ, we have

‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω) ≤ ǫ (24)

This proves the continuous dependence of the solution on the initial data.
(c) Uniqueness of the solution.
Let (ū, v̄), (û, v̂) be two solutions of the problem in eqns (5), with the same initial value, i.e., ū(0) =

û(0), v̄(0) = v̂(0).
Following the proof of stability, we can get eqn. (21). Taking the integral w.r.t. θ from 0 to τ , and

noting that the initial conditions, ū(0) = û(0) = u0, v̄(0) = v̂(0) = v0, we deduce

‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω) ≤
1

̺
C2

kC̄

∫ τ

0

(‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω))dθ (25)
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Using the Gronwall lemma, we obtain ‖ū − û‖2
L2(Ω) + ‖v̄ − v̂‖2

L2(Ω) ≤ 0.
This concludes the uniqueness of the solution. ¥

4. NUMERICAL SCHEME
Considering both stability and accuracy, we propose a semi-implicit scheme for implementing the proposed
hybrid diffusion model. We discretize both the flow-driven and image-drive diffusion terms in the explicit
way, and the reaction term in partially implicit way. The formulation can be set up as

uk+1−uk

τ
= βof

∑2
l=1(Af )l(u

k, vk)uk+1 + 2βI

∑2
l=1(AI)lu

k+1 − 2α(Ixuk+1 + Iyvk + It)Ix

vk+1−vk

τ
= βof

∑2
l=1(Af )l(u

k, vk)vk+1 + 2βI

∑2
l=1(AI)lv

k+1 − 2α(Ixuk + Iyvk+1 + It)Iy

(26)

where τ is the scale step, (Af )1 and (Af )2 are matrices from standard finite difference approximations
to the nonlinear isotropic diffusion term:

A1 ← ∂x(gv1,x) =











gi,j+gn,j

2h2
1

(n ∈ ℵ(i))

−
∑

n∈ℵ(i)
gi,j+gn,j

2h2
1

(j = i)

0 otherwise

A2 ← ∂y(gv1,y) =











gi,j+gi,n

2h2
2

(n ∈ ℵ(j))

−
∑

n∈ℵ(j)
gi,j+gi,n

2h2
2

(j = i)

0 otherwise

(27)

where (i, j) refers to the pixel points, 1 ≤ i ≤ M, 1 ≤ j ≤ N , ℵ(i) is the set of neighbors of i. h1 and
h2 denote the pixel size in x and y direction, respectively. gk

i,j is the approximation of Φ′(‖∇Gσ ∗ u‖2 +

‖∇Gσ ∗ v‖2) at step k on pixel (i, j). (AI)1 and (AI)2 are matrices from finite difference approximations
to the anisotropic diffusion term.

To clearly describe the expression from the discretization of the two diffusion terms and analyze the
system structure, eqns (26) can be further written as follows

(uk+1)i,j{
1
τ

+ βof [
gk

i+1,j+gk
i,j

2h2
1

+
gk

i−1,j+gk
i,j

2h2
1

+
gk

i,j+1+gk
i,j

2h2
2

+
gk

i,j−1+gk
i,j

2h2
2

]

+2βI [
(d11)i+1,j+(d11)i,j

2h2
1

+
(d11)i−1,j+(d11)i,j

2h2
1

+
(d22)i,j+1+(d22)i,j

2h2
2

+
(d22)i,j−1+(d22)i,j

2h2
2

+
(d12)i+1,j+1+(d12)i,j

2h1h2
+

(d12)i−1,j−1+(d12)i,j

2h1h2
−

(d12)i+1,j−1+(d12)i,j

2h1h2
−

(d12)i−1,j+1+(d12)i,j

2h1h2
] + 2αIx

2(xi,j)}

+(uk+1)i,j+1{−βof

gk
i,j+1+gk

i,j

2h2
1

− 2βI
(d22)i,j+1+(d22)i,j

2h2
2

} + (uk+1)i−1,j+1{2βI
(d12)i−1,j+1+(d12)i,j

2h1h2
}

+(uk+1)i+1,j{−βof

gk
i+1,j+gk

i,j

2h2
1

− 2βI
(d11)i+1,j+(d11)i,j

2h2
1

} + (uk+1)i+1,j+1{−2βI
(d12)i+1,j+1+(d12)i,j

2h1h2
}

+(uk+1)i+1,j−1{2βI
(d12)i+1,j−1+(d22)i,j

2h1h2
} + (uk+1)i−1,j{−βof

gk
i−1,j+gk

i,j

2h2
1

− 2βI
(d11)i−1,j+(d11)i,j

2h2
1

}

+(uk+1)i,j−1{−βof

gk
i,j−1+gk

i,j

2h2
2

− 2βI
(d22)i,j−1+(d22)i,j

2h2
2

} + (uk+1)i−1,j−1{−2βI
(d12)i−1,j−1+(d12)i,j

2h1h2
}

= 1
τ
(uk)i,j − 2αIx(xi,j)Iy(xi,j)(v

k)i,j − 2αIx(xi,j)It(xi,j)

(28)

(vk+1)i,j{
1
τ

+ βof [
gk

i+1,j+gk
i,j

2h2
1

+
gk

i−1,j+gk
i,j

2h2
1

+
gk

i,j+1+gk
i,j

2h2
2

+
gk

i,j−1+gk
i,j

2h2
2

]

+2βI [
(d11)i+1,j+(d11)i,j

2h2
1

+
(d11)i−1,j+(d11)i,j

2h2
1

+
(d22)i,j+1+(d22)i,j

2h2
2

+
(d22)i,j−1+(d22)i,j

2h2
2

+
(d12)i+1,j+1+(d12)i,j

2h1h2
+

(d12)i−1,j−1+(d12)i,j

2h1h2
−

(d12)i+1,j−1+(d12)i,j

2h1h2
−

(d12)i−1,j+1+(d12)i,j

2h1h2
] + 2αIx

2(xi,j)}

+(vk+1)i,j+1{−βof

gk
i,j+1+gk

i,j

2h2
1

− 2βI
(d22)i,j+1+(d22)i,j

2h2
2

} + (vk+1)i−1,j+1{2βI
(d12)i−1,j+1+(d12)i,j

2h1h2
}

+(vk+1)i+1,j{−βof

gk
i+1,j+gk

i,j

2h2
1

− 2βI
(d11)i+1,j+(d11)i,j

2h2
1

} + (vk+1)i+1,j+1{−2βI
(d12)i+1,j+1+(d12)i,j

2h1h2
}

+(vk+1)i+1,j−1{2βI
(d12)i+1,j−1+(d22)i,j

2h1h2
} + (vk+1)i−1,j{−βof

gk
i−1,j+gk

i,j

2h2
1

− 2βI
(d11)i−1,j+(d11)i,j

2h2
1

}

+(vk+1)i,j−1{−βof

gk
i,j−1+gk

i,j

2h2
2

− 2βI
(d22)i,j−1+(d22)i,j

2h2
2

} + (vk+1)i−1,j−1{−2βI
(d12)i−1,j−1+(d12)i,j

2h1h2
}

= 1
τ
(vk)i,j − 2αIx(xi,j)Iy(xi,j)(u

k)i,j − 2αIy(xi,j)It(xi,j)

(29)

The two system matrices from eqns (28) and (29) are diagonal dominant, which guarantees the sta-
bility of the semi-implicit scheme.

5. EXPERIMENTAL RESULTS
This section presents the performance of the hybrid diffusion model using the semi-implicit scheme. Both
synthetic and real natural image sequences are used. For the synthetic sequences, we use ground truth
data to evaluate precisely the performance in a quantitative way. As 2D correct motion fields are available,
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one of the popular error measurements is the angular error between the correct velocity and estimated
one:

ψe = arccos(
ucue + vcve + 1

√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)
) (30)

where (uc, vc) denotes the correct velocity, and (ue, ve) is the estimated one.
For the real natural image sequences, we use the reconstruction error to evaluate the results. The

estimated optical flow is used to project the second image back to the first one, and calculate how the
reconstructed image differ from the original one.

In our experiments, we use a 3D Gaussian filter to smooth the image sequences. The smoothing
of the gradient of optical flow during the diffusion process is fulfilled by convolution with the Gaussian
derivative operator.

Synthetic sequence: First, we use the Yosemite sequence, which is a complex and challenging test
sequence. It has a wide range of velocities, occluding edges, severe aliasing in the lower part of the scene.
Clouds move from left to right at the top, and there exists a divergent motion starting from the upper
right corner of the scene.

(a) (b)
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9.5
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Average angular error

scale evolution
0 20 40 60 80 100

8

9

10

11

12

13

14

15

16
Standard deviation

scale evolution

(c) (d)

Figure 1. Performance on Yosemite sequence, with α = 0.001, τ = 3.0, λof = 0.05, λI = 0.5, βof =
1.0, βI = 0.002, (a) image #10, (b) optical flow needle map, (c) average angular error, (d) standard
deviation.

The semi-implicit scheme is implemented for the hybrid diffusion model as described in eqns (28) and
(29). Its performance is shown in Figure 1. With strong stability, the error drops dramatically at the
first few steps and converges very fast with accurate estimation. Without restriction on scale step size,
in this experiment τ is set to 3. The initial values are chosen from Horn’s method.

To well demonstrate the properties of the proposed model, Figure 2 gives a comparison of different
methods by illustrating the evolution of their error statistics for the first 200 scale steps (AOS(additive
operator splitting), G-S (Gauss-Seidel) and Linear Multigrid are different implementation schemes for
nonlinear isotropic diffusion model [21]). To evaluate the stability, we set the initial value of the optical
flow to zero. The properties of the proposed hybrid diffusion model are obvious. As it can be seen, the
hybrid diffusion model with the semi-implicit scheme has fast convergence and accurate estimation.

Table 1 summarizes the performance obtained using some existing methods, as well as the proposed
one. One can notice that the proposed hybrid diffusion model with the semi-implicit scheme provides good
estimation results, although it is not the best one. Considering the methods outperform the proposed
one, Brox et al. [4] introduced gradient constancy constraint besides the standard brightness constancy
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assumption; Mémin and Pérez [13] utilized the adaptive multigrid framework and robust estimators for
data and regularization terms; Alvarez et al. [3] obtained the initial values by using a pyramid-based
focusing algorithm, the scale step size was set to τ = 10 with 50 iteration steps (the final scale is 500);
while for the proposed hybrid diffusion model, the initial values could be simply set to zero, and the scale
step size τ = 3 with 40 iteration steps.
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Linear Multigrid 

Hybrid model: semi−implicit 

Horn’s 

Nagel’s 
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24

scale evolution

Standard deviation
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Hybrid model: semi−implicit 

Nagel’s 

Linear Multigrid 

G−S 

AOS Horn’s 

(a) (b)

Figure 2. Comparison of different schemes w.r.t., (a) average angular error, (b) standard deviation.

Technique Average angular error Standard deviation

Horn and Schunck (original) 31.69 31.18
Horn and Schunck (modified) 9.78 16.19
Nagel 10.22 16.51
Anandan (unthresholded) 13.36 15.64
Uras et al. (unthresholded) 8.94 15.61
Singh (step 1) 10.03 13.13
Alvarez[3] 5.53 7.40
Mémin and Pérez[13] 4.69 6.89
Brox et al. [4] 1.94 6.02

nonlinear isotropic diffusion
(AOS scheme)

6.12 9.99

nonlinear isotropic diffusion
(G-S solver)

6.13 10.03

nonlinear isotropic diffusion
(linear MG solver)

6.09 9.09

Hybrid diffusion model
(explicit scheme)

6.84 9.85

Hybrid diffusion model
(semi-implicit scheme)

5.91 8.56

Table 1. Comparison between different methods for the Yosemite sequence

Real image sequence: Natural image sequences are used as well to evaluate the proposed diffusion
model. Figure 3 presents the performance on Rubic sequence (Figure 3(a)), which consists of a cube
rotating counter-clockwise on a turning table in the scene. Due to the stability of the semi-implicit
scheme, the scale step size has been set to τ = 4. As expected, the semi-implicit scheme provides good
estimations with detailed discontinuities in limited iteration steps. Its reconstruction RMS decreases
dramatically and converges after 15 steps, while the explicit scheme takes 200 steps before convergence.

We can observe that precise motion field without over-smoothing, as well as detailed discontinuities
are obtained using the hybrid diffusion model with the semi-implicit scheme.

Figure 3(d) illustrates the comparison of the different methods we present here in terms of reconstruc-
tion RMS for first 50 scale steps. These results further validate the properties we discussed above.
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Linear MultigridAOS 
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Figure 3. Performance on Rubic sequence, with α = 0.002, τ = 4.0, βof = 1.0, βI = 0.01, (a) image
#10, (b) optical flow needle map, (c) reconstruction mapping error, (d) reconstruction RMS of different
methods.

6. CONCLUSIONS
In this paper, we proposed a hybrid diffusion model for optical flow estimation, both image driven and flow
driven information are used for the regularization terms of the linear anisotropic diffusion and nonlinear
isotropic diffusion, respectively. Compared with the existing diffusion models for optical flow estimation,
it can preserve the discontinuities in both magnitude and orientation. Furthermore, we developed the
theoretical analysis to prove the existence, stability and uniqueness of the solution obtained using the
proposed hybrid diffusion model. A semi-implicit scheme is proposed to implement the model with strong
stability. From the experimental results, one can conclude that, the proposed hybrid diffusion model pro-
vides accurate estimation and fast convergence. The further analysis of influence in estimation results
from numerical methods and the hybrid diffusion model itself respectively is under investigation.

Acknowledgement
This research has been partially conducted within the framework of the Inter-Universitary Attraction-
Poles program number IAP 5/06 Advanced Mechatronic Systems, funded by the Belgian Federal Office
for Scientific, Technical and Cultural Affairs. The authors would like to acknowledge the valuable com-
ments and the two reference papers suggested by the referees.

REFERENCES

1. L. Alvarez, J.E. Monreal, M. Lefebure and J. Sánchez, A PDE model for computing the optical flow,
In Proceedings of CEDYA XVI, Universidad de las Palmas de Gran, Canaria, September 1999, pp.
1349–1356.

2. L. Alvarez, J. Weickert and J. Sánchez, A scale-space approach to nonlocal optical flow calculations,
In Scale-Space Theories in Computer Vision, (eds. M. Nielsen and P. Johansen), Springer-Verlag,
Berlin, 1999, pp. 235–246.

3. L. Alvarez, J. Weickert and J. Sánchez, Reliable Estimation of Dense Optical Flow Fields with Large
Displacements, Technical Report 2, Instituto Universitario de Ciencias y Tecnologias Ciberneticas,

Y02
9



Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain, November
1999.

4. T. Brox, A. Bruhn, N. Papenberg and J. Weickert, High accuracy optical flow estimation based on a
theory for warping, In Proceedings of the Eighth European Conference on Computer Vision, Prague,
Czech Republic, May 2004, pp. 25–36.
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